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STATISTICS 
The word "statistics" is used in several different senses. In the broadest sense, "statistics" refers to a range of techniques and procedures for analyzing data, interpreting data, displaying data, and making decisions based on data. This is what courses in "statistics" generally cover. 

In a second usage, a "statistic" is defined as a numerical quantity (such as the mean) calculated in a sample. Such statistics are used to estimate parameters. 

The term "statistics" sometimes refers to calculated quantities regardless of whether or not they are from a sample. For example, one might ask about a baseball player's statistics and be referring to his or her batting average, runs batted in, number of home runs, etc. Or, "government statistics" can refer to any numerical indexes calculated by a governmental agency. 

Although the different meanings of “statistics” have the potential for confusion, a careful consideration of the context in which the word is used should make its intended meaning clear.

BASIC STATISTICS

MEDIAN

Here are the sample test scores of a class: 

100, 100, 99, 98, 92, 91, 91, 90, 88, 87, 87, 85, 85, 85, 80, 79, 76, 72, 67, 66, 45 

The "middle" score of this group could easily be seen as 87. Why? Exactly half of the scores lie above 87 and half lie below it. Thus, 87 is in the middle of this set of scores. This score is known as the median. 

In this example, there are 21 scores. The eleventh score in the ordered set is the median score (87), because ten scores are on either side of it. 

If there were an even number of scores, say 20, the median would fall halfway between the tenth and eleventh scores in the ordered set. We would find it by adding the two scores (the tenth and eleventh scores) together and dividing by two.

MODE

The mode (or modal score) of a set of data is a kind of center. For example, if you are looking for a suit and, in glancing around the shop, you notice a lot of price tags with $200 on them, you would probably say that suits in that store cost about $200. What you are giving is your impression of the typical price of a suit based upon seing lots of price tags for $200. This brings us to the concept of mode. 

The most frequent or most common score in a set of scores is called the mode. 

Make certain that you realize that it is the most common score and not the highest score that constitutes the mode. 

The word, mode, comes from French, meaning "fashion." This makes sense, right? If a particular brand of jeans is in fashion, it is the brand most often bought. 

MEAN

When people speak of a "middle" score they often think of what is known as the arithmetic mean or just mean, for short. This is what most people also refer to as the "average" of a set of scores. However, a strong case can be made for calling the median "average," too. Thus, we will try to avoid using the term "average," in order to be more precise and to avoid confusion. 

It is quite possible that you are already familiar with this method of measuring the middle. When your English teacher determines your final grade for the semester, he or she probably uses the mean of all your homework, quiz, and test scores. You may have even taken the mean yourself in an effort to find out your grade before the report card. 

We have now discussed three statistical measures: mode, median, and mean. The concept and uses of mode are obvious. It answers the question, "Which object appears the most often in our data set?" 

Median and mean are a little more slippery. Because both of them measure a type of "average" score, we call them measures of central tendency, or measures of the "center" of the scores in a given data set (actually, the mode is also considered a measure of central tendency, but we are more interested in the median and the mean). 

We now have two perfectly good measures for this, but when do we use each one and why? Let's attack this question by looking at just what makes these two measures different from one another. 

So far, We have covered about mean, median, and mode. These are essential items in statistics, but they are by no means the only important statistical measures. 

There is a joke that goes, "If a statistician had her hair on fire and her feet in a block of ice, she would say that 'on the average' she felt good." Of course, this is a silly example, but to what is this unfortunate statistician referring? What is she ignoring? 

Examples:
	Find the median weight of 5 seventh grade students whose weights in pounds are listed below.
82 lb,  102 lb,  75 lb,  91 lb,  89 lb
	75 lb,  82 lb,  89 lb,  91 lb,  102 lb
Median = 89 lb


	The test scores of 9 seventh grade students are listed below. Find the mode.
82,  92,  75 ,  91,  92,  89,  95,  100,  86
	75,  82,  86,  89,  91,  92,  92,  95,  100
Mode = 92


RANDOM VARIABLE

A random variable is a variable that takes values according to the results of events. Suppose X is a random variable and denotes the outcome of a tossed coin. So X may be tail or head. There are two alternatives for X.

X  =  tail or X =  head depending on the outcome of the tossed coin.

Another example: Suppose X is the outcome of a die. Then X may take values 1,2,3,4,5,6. X is a random variable that takes values according to the outcome of the die.

Continuous & Discrete Random Variables:
In the two examples given above, X is a discrete random variable. So if a random variable takes countable number of values, then it is a discrete random variable. If a random variable takes uncountable number of outcomes then it is a continuous random variable.  

If X is a random variable, then E(X) denotes the mean of this random variable such that it is the average of the all possible outcomes that X may take.

E(X) is calculated by 
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, where Xi ‘s are the outcomes. 

Variance, is a measure  of dispersion which is measured by the formula:
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Where 
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 is the mean or expected value of the random variable X.

Standard deviation is square root of variance. 

Recall that by taking the expected value of various transformations of a random variable, we can measure many interesting characteristics of the distribution of the variable. In this section, we will study an expected value that measures a special type of relationship between two real-valued variables. This relationship is very important both in probability and statistics.

Covariance & Correlation

Suppose that X and Y are real-valued random variables for the experiment with means E(X), E(Y) and variances var(X), var(Y), respectively (assumed finite). The covariance of X and Y is defined by

cov(X, Y) = E{[X - E(X)][Y - E(Y)]}

and (assuming the variances are positive) the correlation of X and Y is defined by

cor(X, Y) = cov(X, Y) / [sd(X) sd(Y)].

Correlation is a scaled version of covariance; note that the two parameters always have the same sign (positive, negative, or 0). When the sign is positive, the variables are said to be positively correlated; when the sign is negative, the variables are said to be negatively correlated; and when the sign is 0, the variables are said to be uncorrelated. As these terms suggest, covariance and correlation measure a certain kind of dependence between the variables. 

Some properties

The following exercises give some basic properties of covariance. The main tool that you will need is the fact that expected value is a linear operation.

 cov(X, Y) = E(XY) - E(X)E(Y)

 cov(X, Y) = cov(Y, X).

 cov(X, X) = var(X).

 cov(aX + bY, Z) = a cov(X, Z) + b cov(Y, Z).

 X and Y are uncorrelated if and only if

E(XY) = E(X)E(Y).

In particular, if X and Y are independent, then they are uncorrelated. However, the converse fails with a passion.

Cumulative Distribution:

Suppose that F(x) is the distribution of the random variable X. This means that probability of X
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 x is F(x) or P(X
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x) = F(x). 

For example if X is the random variable of the outcome of rolling a die. F(4) means P(X
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4) = P(1) + P(2) + P(3) + P(4) = 4/6.

Probability Density Function:

Assume 
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 is the probability density function of random variable X, this means probability that X = x is equal to 
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Law of large numbers:

It is simply as  
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. So as n increases arithmetic mean of random variable X approaches the real mean. 

NORMAL DISTRIBUTION

Standard normal distribution :

The standard normal distribution is a normal distribution with a mean of 0 and a standard deviation of 1. 

Normal distributions can be transformed to standard normal distributions by [image: image11.png]


 the formula:
where X is a score from the original normal distribution, ( is the mean of the original normal distribution, and ( is the standard deviation of original normal distribution. The standard normal distribution is sometimes called the z distribution. A z score always reflects the number of standard deviations above or below the mean a particular score is. For instance, if a person scored a 70 on a test with a mean of 50 and a standard deviation of 10, then they scored 2 standard deviations above the mean. Converting the test scores to z scores, an X of 70 would be:
                                                  [image: image12.png]70-50
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So, a z score of 2 means the original score was 2 standard deviations above the mean. Note that the z distribution will only be a normal distribution if the original distribution (X) is normal.
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Applying the formula [image: image13.png]


will always produce a transformed variable with a mean of zero and a standard deviation of one. However, the shape of the distribution will not be affected by the transformation. If X is not normal then the transformed distribution will not be normal either. One important use of the standard normal distribution is for converting between scores from a normal distribution and percentile ranks. 

Areas under portions of the standard normal distribution are shown to the right. About .68 (.34 + .34) of the distribution is between -1 and 1 while about .96 of the distribution is between -2 and 2. 
What's so important about the normal distribution?

One reason the normal distribution is important is that many psychological and educational variables are distributed approximately normally. Measures of reading ability, introversion, job satisfaction, and memory are among the many psychological variables approximately normally distributed. Although the distributions are only approximately normal, they are usually quite close. A second reason the normal distribution is so important is that it is easy for mathematical statisticians to work with. This means that many kinds of statistical tests can be derived for normal distributions. Almost all statistical tests discussed in this text assume normal distributions. Fortunately, these tests work very well even if the distribution is only approximately normally distributed. Some tests work well even with very wide deviations from normality. Finally, if the mean and standard deviation of a normal distribution are known, it is easy to convert back and forth from raw scores to percentiles.
Converting to percentiles 

[image: image28.png]


If the mean and standard deviation of a normal distribution are known, it is relatively easy to figure out the percentile rank of a person obtaining a specific score. To be more concrete, assume a test in Introductory Psychology is normally distributed with a mean of 80 and a standard deviation of 5. What is the percentile rank of a person who received a score of 70 on the test? Mathematical statisticians have developed ways of determining the proportion of a distribution that is below a given number of standard deviations from the mean. They have shown that only 2.3% of the population will be less than or equal to a score two standard deviations below the mean. (click here to see why 70 is two standard deviations below the mean.) In terms of the Introductory Psychology test example, this means that a person scoring 70 would be in the 2.3rd percentile. 
                                  [image: image14.png]o ot a0 o oo




This graph shows the distribution of scores on the test. The shaded area is 2.3% of the total area. The proportion of the area below 70 is equal to the proportion of the scores below 70.

What about a person scoring 75 on the test? The proportion of the area below 75 is the same as the proportion of scores below 75. 

                                      [image: image15.png]o ot a0 e oo




A score of 75 is one standard deviation below the mean because the mean is 80 and the standard deviation is 5. Mathematical statisticians have determined that 15.9% of the scores in a normal distribution are lower than a score one standard deviation below the mean. Therefore, the proportion of the scores below 75 is 0.159 and a person scoring 75 would have a percentile rank score of 15.9. 
The table on this page gives the proportion of the scores below various values of z. z is computed with the formula: [image: image16.png]


where z is the number of standard deviations (() above the mean (() X is. 
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What score on the Introductory Psychology test would it have taken to be in the 75th percentile?
(Remember the test has a mean of 80 and a standard deviation of 5.) The answer is computed by reversing the steps in the previous problems. First, determine how many standard deviations above the mean one would have to be to be in the 75th percentile. This can be found by using a z table and finding the z associated with .75. The value of z is .674. Thus, one must be .674 standard deviations above the mean to be in the 75th percentile. Since the standard deviation is 5, one must be (5)(.674) = 3.37 points above the mean. Since the mean is 80, a score of 80 + 3.37 = 83.37 is necessary. Rounding off, a score of 83 is needed to be in the 75th percentile. Since [image: image17.png]


, a little algebra demonstrates that X = (+ z.(. For the present example, X = 80 + (.674)(5) = 83.37 as just shown. 

VALUE AT RISK

Value at Risk ("VaR") is much on the minds of risk managers and regulators these days, because of the promise it holds for improving risk management. 

Because of its technical nature, it is customary to begin any discussion of Value at Risk VaR with a definition. I offer three equivalent definitions. 
(1) A forecast of a given percentile, usually in the lower tail, of the distribution of returns on a portfolio over some period; similar in principle to an estimate of the expected return on a portfolio, which is a forecast of the 50th percentile.
(2) An estimate of the level of loss on a portfolio which is expected to be equaled or exceeded with a given, small probability.
(3) A number invented by purveyors of panaceas for pecuniary peril intended to mislead senior management and regulators into false confidence that market risk is adequately understood and controlled.
THE QUEST FOR THE "HOLY SCALE"
Modern Portfolio Theory ("MPT"), as taught in business schools, tells us that the risk in a portfolio can be proxied by the portfolio standard deviation, a measure of spread in a distribution. That is, standard deviation is all you need to know in order to (1) encapsulate all the information about risk that is relevant, and (2) construct risk-based rules for optimal risk "management" decisions. [The more technically proficient will please forgive my playing somewhat fast and loose with the theory in the interests of clarity.] Strangely, when applied to the quest for the Holy Scale, standard deviation loses its appeal found in MPT. First, managers think of risk in terms of dollars of loss, whereas standard deviation defines risk in terms of deviations (!), either above or below, expected return and is therefore not intuitive. Second, in trading portfolios deviations of a given amount below expected return do not occur with the same likelihood as deviations above, as a result of positions in options and option-like instruments, whereas the use of standard deviation for risk management assumes symmetry.
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	"VaR was developed to provide a single number which could encapsulate information about the risk in a portfolio"


An alternative measure of risk was therefore required. Why not measure the spread of returns, then, by estimating the loss associated with a given, small probability of occurrence. Higher spread, or risk, should mean a higher loss at the given probability. Then senior management can be told that there is 1 in 100, say, chance of losing X dollars over the holding period. Not only is this intuitively appealing, but it's easy to show that when returns are normally distributed (symmetric), the information conveyed is exactly the same as were standard deviation employed, it's just that the scale is different. This approach can be consistent with MPT. It seems, then that perhaps the Holy Scale has been found in VaR. 
THE SLIP 'TWIXT CUP AND LIP
It's perhaps too easy to criticise efforts to implement the VaR concept. It takes some courage to venture into unfamilar terrain and missteps are inevitable. The VaR paradigm is still evolving (as is that of financial risk management in general) and experimentation should be encouraged. To speak of "best practices" is surely premature. 
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	"To speak of 'best practices' is surely premature" 


The general approaches to VaR computation have fallen into three classes called parametric, historical simulation, and Monte Carlo. Parametric VaR is most closely tied to MPT, as the VaR is expressed as a multiple of the standard deviation of the portfolio's return. Historical simulation expresses the distribution of portfolio returns as a bar chart or histogram of hypothetical returns. Each hypothetical return is calculated as that which would be earned on today's portfolio if a day in the history of market rates and prices were to repeat itself. The VaR then is read from this histogram. Monte Carlo also expresses returns as a histogram of hypothetical returns. In this case the hypothetical returns are obtained by choosing at random from a given distribution of price and rate changes estimated with historical data. Each of these approaches have strengths and weaknesses. 
The parametric approach has as its principal virtue speed in computation. The quality of the VaR estimate degrades with portfolios of nonlinear instruments. Departures from normality in the portfolio return distribution also represent a problem for the parametric approach. Historical simulation (my personal favorite) is free from distributional assumptions, but requires the portfolio be revalued once for every day in the historical sample period. Because the histogram from which the VaR is estimated is calculated using actual historical market price changes, the range of portfolio value changes possible is limited. Monte Carlo VaR is not limited by price changes observed in the sample period, because revaluations are based on sampling from an estimated distribution of price changes. Monte Carlo usually involves many more repricings of the portfolio than historical simulation and is therefore the most expensive and time consuming approach. 
RULE OR TOOL?
It seems that VaR is being used for just about every need; risk reporting, risk limits, regulatory capital, internal capital allocation and performance measurement. Yet, VaR is not the answer for all risk management challenges. 
	[image: image20.png]



	[image: image21.png]



	[image: image22.png]



	"No theory exists to show that VaR is the appropriate measure upon which to build optimal decision rules"


No theory exists to show that VaR is the appropriate measure upon which to build optimal decision rules. VaR does not measure "event" (e.g., market crash) risk. That is why portfolio stress tests are recommended to supplement VaR. VaR does not readily capture liquidity differences among instruments. That is why limits on both tenors and option greeks are still useful. VaR doesn't readily capture model risks, which is why model reserves are also necessary. 
Because VaR does not capture all relevant information about market risk, its best use is as a tool in the hands of a good risk manager. Nevertheless, VaR is a very promising tool; one that will continue to evolve rapidly because of the intense interest in it by practitioners, regulators and academics. 
Calculation of VaR in simple situations:

Consider a position worth $10 million in shares of IBM. We are interested in a 99% confidence level for losses in 10 days. Assume the volatility of IBM in 10 days is 2%.

So standard deviation of daily changes in the value of the position is 2%*10 million = $200,000. and standard deviation in value in 10 days = sqrt(10)*$200,000 = $632,456.

%99 confidence interval corresponds to –2.33 as z value. So 10-day 99% VaR for $10 million position in IBM is therefore, 

2.33*$632, 456 = $1,473,621.

Consider a next portfolio consisting of a $5 million position in Dell ,and suppose the daily volatility of Dell is 1%. A similar calculation for Dell gives 10-day 99% VaR is:

$368,405.

Here we have made an assumption. We assumed that the expected change in the price of a market variable over the time period is zero. This is not exactly true but reasonable. The expected change is very small if we compare it to the standard deviation. 

A two Asset portfolio

 Now consider a portfolio consisting of both $10 million in IBM and $5 million in Dell. Suppose the returns on the two shares have a correlation of 0.7. The standard deviation of the portfolio is found as 751,665. so the 10-day 99% VaR for the portfolio is 

$1,751,379.

To generalize the example, we suppose that we have a portfolio of worth P consisting of n assets with an amount (i being invested in asset i. We define (xi as the return on asset i in one day. It follows that the dollar change in the value of our investment in asset i in one day is 
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If we assume that E((P) = 0. The standard deviation of (P, (P is given by the formula:
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The standard deviation of the change over N days is 
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and the 99% VaR for an N-day time horizon is 2.33
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Monte Carlo Simulation:

As an alternative, we can use Monte Carlo Simulation to generate the probability distribution for (P. The VaR is calculated as the appropriate percentile of the probability distribution of (P. suppose, for example that we calculate 5,000 different sample values of (P by monte carlo simulation. The 1-day 99% VaR is the value of (P for the 50th worst outcome.

Historical Simulation:

Up to now we assumed that the market variables follow normal distributions. But in fact they may have fatter tails than the normal distribution. So this has led the companies to use historical simulation. The fist step is to create a  database consisting of daily movments in all market variables over a few years. These values are used in the simulation.

Stress Testing and Back Testing:

Stress testing involves estimating how the portfolio would have performed under some of the most extreme market moves seen in the last 10 to 20 years. Stress testing can be considered as a way of taking into account extreme events that do occur from time to time but that are virtually impossible according to the probability distributions assumed for the market variables. A 5-standard deviation daily move in a market variable is one such extreme event. Under the assumption of normal distribution, it happens about once every 7,000 years but, in practice, it is not uncommon to see twice every 10 years.

An important reality check is back-testing. It involves testing how well the VaR estimates would have performed in the past. Suppose that we are calculating a 1-day 99% VaR. back-testing would involve looking at how often the loss in a day exceeded the 1-day 99% VaR. if this happened on about 1 percent of th days, we can feel reasonably comfortable with the methodology for calculating VaR. if it happened on, say 10% of the days, then the methodology is suspect. 

Principal Components Analysis:

One approach to handling the risk arising from groups of highly correlated market variables is principal components analysis. This takes historical data on movements in the market variables and attempts to define a set of components or factors that explain the movements. 
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